
	

1
	

Transfer of Satellite Rainfall Uncertainty from Gauged to
	2
	

Ungauged Regions at Regional and Seasonal Timescales

3

	

4
	

Ling Tang and Faisal Hossain

	5
	

Department of Civil and Environmental Engineering, Tennessee Technological University,

	

6
	

Cookeville, TN 38505-0001, USA
7

	

8
	

George J. Huffman
	9
	

Science Systems and Applications, Inc.

	

10
	

NASA Goddard Space Flight Center, Laboratory for Atmospheres

	

11
	

Greenbelt, MD 20771, USA
12
13
14
15

	

16
	

Submitted to:

	

17
	

Journal of H)jr•oineteor•ology

	

18
	

Revised: July 7, 2010
19
20
21
22
23
24
25

	

26
	

Corresponding Author
27

	

28
	

Dr. Faisal Hossain

	

29
	

Department of Civil and Environmental Engineering

	

30
	

Tennessee Technological University

	

31
	

1020 Stadium Drive, Box 5015

	

32
	

Cookeville, TN 38505

	

33
	

USA
34



35	 ABSTRACT
36	 Hydrologists and other users need to know the uncertainty of the satellite rainfall data sets across

37	 the range of time/space scales over the whole domain of the data set. Here, `uncertainty' refers to

38	 the general concept of the `deviation' of an estimate from the reference (or ground truth) where

39	 the deviation may be defined in multiple ways. This uncertainty information can provide insight

40	 to the user on the realistic limits of utility, such as hydrologic predictability, that can be achieved

41	 with these satellite rainfall data sets. However, satellite rainfall uncertainty estimation requires

42	 ground validation (GV) precipitation data. On the other hand, satellite data will be most useful

43	 over regions that lack GV data, for example developing countries. This paper addresses the open

44	 issues for developing an appropriate uncertainty transfer scheme that can routinely estimate

45	 various uncertainty metrics across the globe by leveraging a combination of spatially-dense GV

46	 data and temporally sparse surrogate (or proxy) GV data, such as the Tropical Rainfall

47 Measuring Mission (TRMM) Precipitation Radar and the Global Precipitation Measurement

48	 (GPM) mission Dual-Frequency Precipitation Radar. The TRMM Multi-satellite Precipitation

49 Analysis (TMPA) products over the US spanning a record of 6 years are used as a representative

50	 example of satellite rainfall. It is shown that there exists a quantifiable spatial structure in the

51	 uncertainty of satellite data for spatial interpolation. Probabilistic analysis of sampling offered by

52	 the existing constellation of passive microwave sensors indicate that transfer of uncertainty for

53	 hydrologic applications may be effective at daily time scales or higher during the GPM era.

54	 Finally, a commonly used spatial interpolation technique (kriging), that leverages the spatial

55	 correlation of estimation uncertainty, is assessed at climatologic, seasonal, monthly and weekly

56	 timescales. It is found that the effectiveness of kriging is sensitive to the type of uncertainty

57	 metric, time scale of transfer and the density of GV data within the transfer domain. Transfer

58	 accuracy is lowest at weekly timescales with the error doubling from monthly to weekly.
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59 However, at very low GV data density (<20% of the domain), the transfer accuracy is too low to

60	 show any distinction as a fiinction of the timescale of transfer.

61

62	 Keywords: Satellite precipitation, uncertainty, transfer, spatial interpolation, GPM.

63
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64 1.0 INTRODUCTION

65	 Precipitation is arguably one of the most important components of the water cycle over

66	 land. One study shows that almost 70-80% of the variability in the terrestrial water cycle can be

67	 explained from the spatio-temporal variability observed in precipitation over land (Syed et al.,

68 2004). Existing missions such as the Tropical Rainfall Measurement Mission (TRMM) provide

69	 vital precipitation information for water cycle studies (Huffman et al., 2007). Furthermore,

70 planned missions such as the Global Precipitation Measurement (GPM) mission will provide a

71	 global hydrologic remote sensing observatory to advance the use of precipitation sensing

72	 technologies in scientific inquiry into hydrologic processes (Krajewski et al., 2006). With the

73	 global and more frequent precipitation observational capability planned for GPM, such

74	 precipitation measuring satellite missions permit us to refine knowledge from physical and

75	 hydrologic models that can then be converted to local and global strategies for water resources

76	 management (Voisin et al., 2008; Hossain et al., 2007). [Hereafter, because our • focus is on

77	 liquid precipitation, the term 'rainfall' will be used as shorthand for `precipitation' for

78	 convenience]

79	 However, a crucial challenge in advancing satellite rainfall-based surface hydrologic

80	 prediction, is the need to bridge the scale incongruity between overland hydrologic processes that

81	 evolve at small scales (i.e., < 1 hour and < 5 km) and operational satellite precipitation datasets

82	 that will always be restricted to coarser scales from passive microwave sensors (i.e., > 1 hour and

83	 > 5 km; Hossain and Lettenmaier, 2006). There are two paths that have historically been

84	 followed as a response to this scale incongruity: 1) apply satellite rainfall data available at the

85	 native scale for hydrologic prediction (e.g., Harris and Hossain, 2008; Su et al., 2008; Voisin et

86	 al., 2008); and 2) apply spatial and spatio-temporal disaggregation (or downscaling) techniques
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87	 to resolve satellite rainfall data at the required smaller space-time scales for hydrologic

	

88	 prediction (e.g., Forman et al., 2009; Bindlish and Barros, 2000). Each option leads to non-

	

89	 negligible uncertainty in hydrologic simulation. In the first case, the major source of this

90 uncertainty is due to the algorithmic and sampling uncertainty (for passive microwave-PMW

	

91	 sensors) of satellite rainfall data at the native scale. In the second case, the primary source of

	

92	 uncertainty is due to the statistical disaggregation technique that further propagates the native

	

93	 scale uncertainty to sub-grid uncertainty in ways that are not well understood (see for example,

	

94	 Rahman et al., 2009). Either way, hydrologists and other users, need to know the uncertainty of

	

95	 the satellite rainfall data sets across the range of time/space scales over the whole domain of the

	

96	 data set. This uncertainty can provide insightful information to the user on the realistic limits of

	

97	 utility that can be achieved with satellite rainfall data sets, for example for hydrologic

	

98	 predictability (Hong et al., 2006), on which we will focus in this paper. While representing the

	

99	 uncertainty structure of satellite rainfall as a function of scale against quality-controlled ground

	

100	 validation datasets remains a critical research problem for GPM, therein lies a paradox. Satellite

	

101	 rainfall uncertainty estimation requires ground validation (GV) precipitation data. On the other

	

102	 hand, satellite data will be most useful over ungauged regions in the developing world (Tang and

	

103	 Hossain, 2009).

	

104	 In-sitar rainfall information from rain gauge networks is generally considered the standard

	

105	 choice for GV data (Villarim and Krajewski, 2007; Habib et al., 2004; McCollum et al., 2002).

	

106	 Such data is often referred to as `reference' or `truth'. However, in-site gauges are point

	

107	 measurements and unless there exists a dense network to adequately capture the space-time

	

108	 variability of rainfall process, its use for validating areal-averaged satellite rainfall data for

	

109	 surface hydrologic processes remains questionable (Ciach and Krajewski, 1999). The work of
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110	 Gebremichael et al. (2003) clearly demonstrates the sensitivity of satellite rainfall uncertainty

111	 estimation to gauge density. Thus, in most regions across the globe without adequate in-situ rain

112	 gauge coverage, the uncertainty associated with satellite data have been parameterized to

113	 sampling configuration of the sensors at this stage (Li et al., 1998; Huffman, 1997). Some

114	 examples of this parameterization are the Global Precipitation Climatology Project (GPCP;

115	 Huffman, 2005; Huffman et al., 1997) dataset and the TRMM Multi-satellite Precipitation

116 Algorithm (TMPA; Huffman et al., 2007) that now provide an estimate of the Root Mean-

117	 Squared Uncertainty (RMSE) of the satellite rainfall estimates on the basis of sampling pattern

118	 and the period of rainfall accumulation of interest to the user.

119	 While such parameterized methodologies for estimating uncertainty have been useful in

120	 providing users with a level of confidence associated with satellite rainfall estimates, such

121	 uncertainty is essentially a standard deviation measure of sampling uncertainty. Many of these

122	 uncertainty methodologies are based on the conceptual argument that uncertainty (Le, standard

123	 deviation, (YE) can be related directly or inversely to observation interval (At), observation period

124	 (T), spatial averaging area (A), and rain rate (R):

125

	

1 1 At	 1
126	 6E – f — ,

R A
A 

T
,	 parameter° 

J	
(1)

127

128	 as expressed by Steiner et al. (2003), among others. In many cases, the functional form of this

129	 `predicted' uncertainty is not benchmarked to the realities of the ground observations and hence

130	 may not provide a reasonable assessment in indicating the expected reliability for water cycle

131	 studies (Gebremichael et al., 2010). Recently, several other parameterized methodologies have

132	 evolved based on data assimilation approaches (e.g. Kalman filtering in GsMAP satellite product
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133	 of Ushio et al., 2009). In these approaches, an estimate of uncertainty that is available is

134	 essentially related to the methodology of the filtering technique and does not necessarily indicate

135	 the actual level of agreement with GV rainfall data. In some instances, however, the uncertainty

136	 is estimated by comparing the output of a wide-coverage technique (such as infrared-IR advected

137	 PMW) to a more localised but higher accuracy product (such as PMW only; Ushio et al., 2009).

138	 There now exists a sufficient body of knowledge on uncertainty metrics and models that

139	 we should consider a transition to a more hydrologically-relevant framework in anticipation of

140	 the satellite data-rich scenario of GPM. Although existing uncertainty metrics and uncertainty

141	 models represent an important first step, most treat uncertainty as a single measure representative

142	 for a large space and time domain. This uni-dimensional uncertainty measure is invariably the

143	 standard deviation of uncertainty (e.g. Eqn. 1). However, a satellite rainfall product with an

144 uncertainty standard deviation (GE) of X mm/hr over a large space-time domain can be

145	 represented by a multiplicity of distinct spatio-temporal patterns of rainfall, each having a

146	 distinct response in surface hydrology (see for example, Lee and Anagnostou, 2004).

147	 What is therefore needed now for advancing the hydrological application of GPM is a

148	 practical methodology that can routinely `transfer' a set of hydrologically-relevant uncertainty

149 metrics from locations/regions having GV-based values to ungauged regions for improving water

150	 cycle studies or water resources management. Here, `transfer' is akin to spatial interpolation at

151	 non-sampled locations (grid boxes) using measurements from sampled but sparse locations (grid

152	 boxes). Figure 1 provides a conceptual rendition of this idea of `transfer' of uncertainty based on

153	 the concept of spatial interpolation (taken from Ling and Hossain, 2009).

154	 This paper analyzes the open issues for developing an appropriate uncertainty transfer

155	 scheme that can routinely estimate various uncertainty metrics across the globe by leveraging a
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156	 combination of spatially-dense GV data and temporally sparse surrogate (or proxy) GV data

157 from sources such as the TRMM-like PR sensor anticipated during the GPM era. The TRMM

158	 Multi-satellite Precipitation Analysis (TMPA) products 31342RT and 31341RT (Huffman et al.,

159	 2007) over the US spanning a record of 6 years are used as a representative example of satellite

160	 rainfall. The paper presents a probabilistic analysis of sampling offered by the existing

161	 constellation of precipitation-relevant satellite PMW sensors in order to understand the current

162	 and expected spatial coverage during the GPM era. A commonly used spatial interpolation

163	 technique (kriging), that leverages the spatial correlation of rainfall estimation uncertainty, is

164	 then investigated for its effectiveness. This effectiveness is cast in the context of the expected

165	 sparseness in GV data expected from TRMM and GPM missions. Finally, important issues

166	 needing closure are summarized on the basis of our investigation of transfer of satellite rainfall

167 uncertainty from GV to non-GV regions. To avoid confusion among readers, hereafter, the terms

168	 `uncertainty' or `uncertainty metric' will be used to define the quality indices of the satellite

169	 rainfall estimate derived at GV locations (such as bias, root mean squared error, probability of

170	 detection). The terms `error' or `transfer error' will be used specifically to define the quality of

171	 the transfer (spatial interpolation) process of uncertainty metrics at non-GV locations.

172
173 2.0 SPATIAL CORRELATION OF SATELLITE RAINFALL UNCERTAINTY

174	 The very first requirement for an effective transfer (spatial interpolation) scheme is the

175	 presence of a quantifiable spatial structure (or spatial correlation) in the variable being

176	 transferred. Therefore, we first investigated the presence of spatial correlation of satellite rainfall

177	 uncertainty. First, in order to minimize the error of the GV rainfall data, we used the National

178 Center for Environmental Prediction's (NCEP) 4 km Stage IV NEXRAD rainfall data that is

179	 adjusted to precipitation gages and conveniently available as a quality-controlled data mosaic
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180	 over the U.S. (Lin and Mitchell, 2005; Fulton et al., 1998). TMPA's near real-time satellite

181	 rainfall data-products from PMW-calibrated Infrared (IR) and merged PMW-IR estimates

182	 (labeled 31341 RT and 31342RT, respectively; Huffman et al., 2007) were used as the satellite

183	 rainfall data. The data for GV and satellite rainfall data spanned 6 years from 2002 to 2007. The

184 NEXRAD Stage IV GV rainfall data were first remapped to 0.25° 3-hourly resolution for

185	 consistency with the native scale of the satellite rainfall products. 31341RT data were also

186	 remapped at the 3-hourly time scale. After a thorough quality assessment and quality control

187	 (QA/QC), the datasets were organized by season and various regions for the years 2002-2007.

188	 In order to study how the satellite rainfall uncertainty is spatially dependent (or

189	 correlated), Tang and Hossain (2009) derived the spatial correlograms for each uncertainty

190	 metric using the TMPA dataset described above. Herein, the correlation length (CL), where the

191	 autocorrelation dropped to 1/e (e-folding distance), was first computed. Next, the empirical semi-

192	 variograms were derived and then idealized as exponential semi-variogram functions,

193	 7(h) = cp + c (1— e -"')	 (2)

194	 where y(h) is the semi-variance at spatial lag `h', co represents the nugget variance (i.e., the

195	 minimum variability observed or the `noise' level at a separation distance of 0); c is the sill

196	 variance (when spatial lag is infinite); and a is the correlation length. Figure 2 provides a

197	 summary of the `climatologic' correlation length (e-folding distance) by season for various

198	 uncertainty metrics of the satellite rainfall products such as Probability of Detection (POD) for

199	 rain, POD for no rain, false alarm ratio (FAR), root mean squared error (RMSE), and bias.

200	 Herein, `climatologic' refers to the mean error derived from the entire 6 year of data. Appendix

201	 one provides the mathematical formulation for the error metrics.
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202	 Figure 2 clearly demonstrates that, at the climatologic (long-term) time scale, satellite

203	 rainfall uncertainty can have distinct spatial organization that can be leveraged for spatial

204	 interpolation. The correlation lengths for a given uncertainty metric as a function of season

205	 appear to be at least 3-5 (0.25°) TMPA grid boxes long. As a rule of thumb, this indicates that

206	 the transfer of error from sampled locations may be effective up to 4 grid boxes (— 100 km)

207	 away. Another interesting feature that is revealed in this figure is the significantly higher

208	 correlation lengths (and spatial organization) observed for 31341RT than 31342RT. This can be

209	 traced to the sources of the specific satellite estimates: 31341RT is uniformly computed using a

210	 calibration of infrared (IR) brightness temperatures to a combined PMW estimate. The statistics

211	 of the uncertainty are spatially very homogenous since they originate from a single probability

212	 distribution at regional scales. On the other hand, 31342RT uses a variety of PMW rainfall

213	 estimates with gaps filled during a 3-hour sampling period with the 31341RT estimate `as is'.

214	 This fill-in causes the 31342RT data to draw on two different probability distributions in space

215	 for uncertainty statistics (IR and PMW); the increased spatial heterogeneity in the uncertainty

216	 structure leads to shorter correlation length. This analysis shows that any uncertainty transfer

217	 scheme should benefit from improvements in the 31342RT product to make it statistically more

218	 homogenous in space.

219
220 3.0 SPATIAL COVERAGE OFFERED BY CURRENT CONSTELLATION OF PMW
221 SENSORS
222
223	 Having observed a distinct spatial organization of uncertainty, we also need to understand

224	 the space/time dimension that is implicit in the concept of real-time uncertainty `transfer' over

225	 non-GV regions. The space dimension pertains to the regions with spatially sparse GV data due

226	 to inadequate in-situ gauge data (such as that shown in Figure 1), which are, of course, recorded
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227	 at fixed positions. The time dimension pertains to the temporally sparse case of using the most

228	 accurate rainfall source currently available from space, such as the orbiting TRMM PR as

229	 'proxy'-GV data, over regions where there is no ground-based GV data. Depending on how we

230	 define GV data, there can be several types of GV `voids' where uncertainty information will be

231	 need to be estimated for GPM. For example, if we rely on the `conventional' ground source for

232	 GV data, voids will be represented by large and stationary regions having little or no

233	 instrumentation. On the other hand, if a `proxy' for GV is defined from orbiting sensors, such as

234 the TRMM PR, or even a highly accurate PMW sensor, then voids will be numerous grid boxes

235	 dynamically changing in location with each satellite orbit.

236	 The left panel of Figure 3 shows the probability of a 31342RT grid box (0.25) having a

237 conical-scanning PMW overpass (comprising either TMI, SSMI or AMSR) in 3, 6 and 24 hour

238 windows. On the right panels of Figure 3, the probability of a 31342RT grid box having a TRMM

239 Microwave Imager (TMI) scan is shown. These probability maps were created using a 100 day

240	 period of any PMW sensor) from the 2007- 2008 period. It is clear from the maps that the spatio-

241	 temporal dynamics of the location of PMW scans is strongly sensitive to the accumulation

242	 periods of hydrologic relevance and one that must be investigated carefully in order to identify

243 how an uncertainty transfer scheme may work using proxy-GV data.

244	 At time scales of 3-6 hours, there are vast regions lacking conventional surface GV data

245	 in the tropics of Africa, Asia and South America where the probability of having a PMW scan is

246	 less than 50% (Figure 3). This makes the estimation of uncertainty through transfer from GV

247 regions at these locations more important for hydrologic applications. While GPM may improve

248 the coverage of PMW scans, such large voids with a low probability for a PMW scan will still

249	 remain over these regions due the continued dependence on polar-orbiting sensors. Since gauge-
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250	 based GV is sparse for these tropical regions at hydrologic scales, proxy GV data from space-

251	 borne sensors (such as that expected from the GPM Dual Frequency Precipitation Radar) may be

252	 one of the few ways to explore if `transfer' of uncertainty is realistic. For the higher latitude land

253	 regions (which comprise mostly the industrialized world with reasonably gauged fixed-location

254	 GV instrumentation), the uncertainty could be transferred from the stationary GV regions. The

255	 right panels of Figure 3 also show that the probability of having a TMI scan also happens to be

256	 lowest (0.1-0.2 in 3 hours) over the tropical regions. However, over a 24 hour time period there

257	 is considerably higher probability of having such a scan (--0.7-0.8). This implies that the

258	 practicable timescale for transferring uncertainty metrics over the tropics from a sun-

259	 asynchronous PMW sensor is at least 24 hours.

260

261 4.0 TRANSFER OF UNCERTAINTY BY SPATIAL INTERPOLATION

262	 Tang and Hossain (2009) recently showed that most uncertainty metrics (such as bias and

263	 POD) are amenable to `transfer' from gauged to ungauged locations using spatial interpolation at

264	 climatologic (six-year average) timescales. The method of ordinary kriging (OK) was used for

265	 testing the `transfer' of uncertainty metrics. OK is the most common (and one of the simplest)

266	 spatial interpolation estimator used to find the best linear unbiased estimate of a second-order

267	 stationary random field with an unknown constant mean as follows:

268	 Z(xo) _	 Aaz( xi)	 (3)

269	 where Z(xo )= kriging estimate at location xo; Z(x i) = sampled value at location x i; ki =

270 weighting factor for Z(x i) (summing to one over all 1), and n is the number of sampled (known)

271	 locations. Kriging methods have already been used for spatial interpolation of precipitation from

272	 point gauge data with considerable success (see for example, Seo et al., 1990; Krajewski, 1987).
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273	 Using the same six-year database of high resolution satellite rainfall data from TMPA

274	 over the central US, the OK method was applied to assess the effectiveness of transfer of

275	 uncertainty metrics from GV to non-GV grid boxes, using correlation as the main assessment

276	 metric. Assuming that only 50% of the region (i.e., grid boxes) was gauged (i.e., having access to

277	 GV data), OK was implemented to estimate uncertainty metrics at the other 50% of the (non-

278	 GV) region. Selection of `GV' grid boxes was random and hence each kriging realization was

279	 repeated 10 times in a Monte Carlo (MC) fashion to derive an average scenario. The semi-

280 variogram and correlation lengths were computed on the basis of the 50% of the assumed

281	 `available' data. Spatial correlograms for each uncertainty metric were derived and the

282	 correlation length (CL), where the autocorrelation dropped to 1/e (e-folding distance), was

283	 computed. The empirical semi-variograms were derived and then idealized as exponential semi-

284	 variogram functions.

285	 Tang and Hossain (2009) showed that the transfer of uncertainty metrics using kriging

286	 did not lead to wholesale changes in the pattern of the uncertainty field when compared to the

287	 true climatologic uncertainty field (see upper left and upper right panels of Figure 4a). Overall,

288	 their assessment indicated that `transfer' uncertainty metrics from a gauged to an ungauged

289	 location through spatial interpolation has merit for selected uncertainty metrics. In Figure 4b, the

290	 histograms for `kriging error' and actual uncertainty (over ungauged grid boxes) demonstrate the

291	 accuracy of the transfer method for FAR. Here, the `kriging error' refers to the difference

292	 between `kriged uncertainty' and `actual uncertainty', whereas the `actual uncertainty' is the

293	 `measured uncertainty'. In other words, the `kriging error' is the estimation uncertainty while the

294	 `actual uncertainty' is the true dataset uncertainty. The actual GV-based uncertainty (i.e., FAR in

295	 this case) is shown in pink while the black line represents the histogram for kriging error. The
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296	 histograms for kriging error are considerably lower, by almost an order of magnitude, compared

297	 to the actual GV-based uncertainty and are almost unbiased.

298	 However, a point to note is that the work of Tang and Hossain (2009) demonstrated the

299	 utility of transfer only at the climatologic time scales with a high degree of GV coverage (50%).

300	 Also, at the climatologic scales, the spatial stricture of uncertainty can be expected to be well

301	 defined and reasonably homogenous (longer correlation lengths of uncertainty that lead to high

302	 accuracy for kriging; see Figure 2). Furthermore, the use of the correlation measure may not

303	 necessary reflect the most rigorous assessment of accuracy for the transfer of error metrics. For

304	 example, there may be high correlation even with large systematic bias in the `kriged' error

305	 metric at non-GV grid boxes. In this study, we therefore explored the effectiveness of kriging at

306	 seasonal (and lower) timescales and modeled how the effectiveness of transfer is impacted by

307	 GV data coverage. We also assessed the accuracy of transfer using marginal and non-correlation

308	 type measures.

309	 Figure 5 shows how GV coverage (as randomly located grid boxes over a region) impacts

310	 the accuracy of kriging-based transfer of uncertainty over the grid boxes lacking GV data for two

311	 different time scales (climatologic and seasonal in the left and right panels, respectively). The

312	 exercise was performed in a manner similar to Tang and Hossain (2009) over the central United

313	 States. The GV coverage was systematically varied from 10% to 90% and the effectiveness of

314	 kriging of uncertainty metric at locations lacking GV data was assessed using the correlation

315	 measure with in-situ (sampled) uncertainty metric. For the seasonal case, the summer months of

316 June-July-August in 2007 over the central US was chosen as an example and one seasonal

317 variogram was modeled.
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318	 The most striking feature of the GV-density study is that the effectiveness of an

319	 uncertainty transfer scheme, specifically kriging in this example, worsens considerably at low

320	 GV coverage (correlation dropping to under 0.7) as time scales shorten. Qualitatively, this result

321	 is expected, and clearly indicates that if a transfer scheme for estimating uncertainty metrics is

322	 finer than seasonal scale (ranging from 3-6 hourly to weekly-monthly), the effectiveness for

323	 uncertainty transfer would intuitively worsen further with kriging. A similar assessment can be

324 made from Figure 3 on the potential of kriging using dynamically located a sun-asynchronous

325	 PMW scans (such as TMI) as proxy-GV data. At 3-6 hours, the probability of a grid box being

326	 scanned by a sun-asynchronous TMI ranges from 0.1 to 0.4. In other words, this is equivalent to

327	 a large region having a fixed GV coverage of 10-40%. Naturally therefore, the effectiveness of

328 OK over the tropics using proxy-GV data in the GPM era may probably not be any better at

329	 timescales shorter than a day.

330	 In order to demonstrate a more rigorous level of accuracy of the interpolation scheme

331	 beyond the correlation measure, we reviewed our kriging simulations for two more scenarios: 1)

332	 transfer of uncertainty metric at monthly time scales and 2) transfer of uncertainty metric at

333	 weekly time scales. For each scenario, we performed a more in-depth assessment for the months

334 of summer and weeks of June of 2007. We used mean error, in place of correlation measure, to

335	 assess the accuracy of the transfer, using the following error definitions:

336

337	 Error = (Interpolated Uncertainty Metric - Actual Uncertainty Metric)/Actual Uncertainty Metric

338	 (4)

339 Mean Error= Mean of Error (as defined above in Eqn 4) over non-GV grid boxes	 (5)

340	 Std. Dev of Error = Standard Deviation of Error (as defined above) over non-GV grid boxes (6)
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341	 Tables la and lb summarize the assessment of OK method using mean relative error

342 (Eqn 5) as the main assessment metric for transfer of uncertainty metrics — BIAS, RMSE, POD

343	 and FAR. For each uncertainty metric both mean and standard deviation of error of transfer is

344	 shown as measures of accuracy and precision, respectively. It is observed that, unlike correlation

345	 measure, the mean and standard deviation of error reveal a somewhat different picture on the

346 utility of OK method. The error metric BIAS has the lowest accuracy ranging from 50% error (at

347	 10% missing GV gridboxes) to 100% error (at 90% missing GV gridboxes) for monthly time

348	 scale. For weekly timescale, the mean error ranges from 80% (at 10% missing GV grid boxes) to

349 120% (at 90% missing GV grid boxes). On the other hand, POD, followed by RMSE and FAR,

350	 have the highest accuracy for transfer of error metrics at both timescales according the mean

351	 relative error measure. As expected, the precision of the kriging based transfer scheme degrades

352	 at shorter timescales. At very low GV coverage (<20%) the standard deviation of transfer error is

353	 high (>100%), indicating poor performance of the OK method regardless of the timescale at

354	 which the uncertainty metrics are transferred.

355

356 5.0 CONCLUSION: THE CURRENT OPEN ISSUES ON UNCERTAINTY TRANSFER

357	 In light of the impact of GV coverage and the timescale on effectiveness of uncertainty

358	 transfer, we now need to consider the following: 1) explore other techniques for transfer that are

359	 more sophisticated than ordinary kriging; and 2) understand how we can leverage the

360	 methodological error estimate that is routinely available from uncertainty models such as

361	 Huffman (1997) and Kalman filtering techniques that many satellite rainfall data algorithms use

362	 (such as, Ushio et al. 2009). In our interpolation method, the spatial structure of rainfall has not

363	 been used alongside that of estimation uncertainty. Because the two (rainfall and its estimation

15



364	 uncertainty) are related, it may be worthwhile to pursue co-kriging type conditional interpolation

365	 schemes that leverage existing information on the satellite rainfall distribution as an extra

366	 constraint.

367	 Also, for spatial interpolation methods, we should keep in mind that traditional

368	 geostatistical tools are pattern filling methods based on the spatial correlation exhibited by two

369	 points in space separated by a lag h. The variogram computed using this two-point geostatistical

370	 approach may simplify the spatial patterns manifested by the complex precipitation systems and

371	 surface emissivities that dictate the accuracy of satellite rainfall products at hydrologic time

372	 scales over land. For the case of spatial interpolation of ground water contamination, it has

373	 recently been demonstrated that the use of a highly non-linear pattern learning technique in the

374	 form of an artificial neural network (ANN) can yield significantly superior results under the

375	 same set of constraints when compared to ordinary kriging method (Chowdhury et al., 2009).

376	 Thus, the use of non-linear mapping techniques are worth an investigation.

377	 Another aspect to keep in mind is the nature of use of each uncertainty metrics. Different

378	 users will have naturally different needs. Hydrologist users engaged in flash flood or monsoonal

379 flood forecasting will probably be more interested in the PODS (to understand the accuracy in

380 estimating peak flow), FAR (to minimize false alarms in flood warnings), and BIAS (to

381	 minimize under/over estimation in river stage) for each grid box (see Harris and Hossain, 2008

382	 and Hossain and Anagnostou, 2004). Hydrologists engaged in continuous simulation based on

383	 soil moisture accounting for drought monitoring and water management would probably focus

384 more on PODNORAIN (to minimize uncertainty in underestimating the soil wetness and

385	 evapotranspiration) for each grid box. On the other hand, crop yield and famine forecasters

386	 would like to focus more on the seasonal bias over a large agricultural zone during the growing
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387	 season as the important indicator of reliability of a satellite rainfall product (personal

388	 communication with Dr. Chris Funk of University of California Santa Barbara).

389	 In summary, developing an uncertainty transfer scheme that is amenable to operational

390	 implementation for estimation of uncertainty metrics for satellite rainfall data over regions

391	 lacking surface GV data is a necessary requirement for current and future satellite precipitation

392	 missions to advance their hydrologic potential. Hydrologist users around the world need to have

393	 a clear understanding of the pros and cons of applying satellite rainfall data for terrestrial

394	 hydrologic applications at a given scale if the benefit of these missions is to be maximized. One

395	 way of facilitating the understanding is through the routine provision of various measures of

396	 uncertainty that are of hydrologic relevance. If this uncertainty information is provided alongside

397	 the global and more frequent precipitation observational capability planned in GPM, it will

398 permit us to refine knowledge from physical and hydrologic models that can then be converted to

399	 local and global strategies for water resources management. Work is currently undergoing to

400	 address some of the open issues discussed above and we hope to report them in the near future.

401
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408	 APPENDIX: FORMULATION OF UNCERTAINTY METRIC'S

409
410	 Consider the 2x2 contingency table of hits and misses associated with satellite rainfall

411	 estimates:

412

413
	

TABLE A.1

414

415

416	 Probability of Detection for Rain (PODS): 	
NA	

(A.1)
N, +N,

417	 Probability of Detection for No Rain (PODNORAIN):	
N

	

N + N	
(A 2)

D	 C

418	 False Alarm Ratio (FAR): 	 NB	 (A.3)
NB + NA

419	 The PODRAIN essentially defines how often a satellite rainfall estimate is likely to correctly

420	 detect gridboxes as rainy according to the reference or ground validation data. Similarly,

421	 PODNOxaIN defines how often a satellite rainfall estimate is likely to correctly detect a non-rainy

422	 grid box as non-rainy according to the ground validation data.

423
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LIST OF FIGURE CAPTIONS

Figure 1. Conceptual rendition of the idea of `transfer' of uncertainty information from a gaged
(GV) location to an ungaged (non-GV) location. Upper panel depicts the notion of `uncertainty'
of satellite rainfall data (in this case, the scalar deviation of magnitudes is termed `uncertainty'
although there are many other types of uncertainty). Lower panel depicts how the known
uncertainty (derived from GV sites shown in black in the middle panel) would be `transferred' to
the non-GV (ungaged) sites shown in blue (right most panel). Reprinted from Tang and Hossain,
2009.

Figure 2. Correlation length of uncertainty metrics at climatologic timescales for 31341 RT
(upper panel) and 31342RT (lower panel) shown as a function of season. Note the distance unit is
0.25 degree grid boxes (-- 25 km). The vertical bars are shown in order from left to right as
`Bias', `RMSE', `POD rain', `POD no-rain', `FAR'. (Taken from Tang and Hossain, 2009).

Figure 3. Left panels: probability of a 31342RT 0.25 0 grid box having a PMW scan from either
TMI, SSMIs or AMSR for 3 hour (upper), 6 hour (middle), and 24 hour periods (bottom). Right
panels: Same as left panels but only for TMI.

Figure 4a. Transfer of Bias of 31341RT from gauged to ungauged locations. Upper left-most
panel shows the true field of uncertainty in bias based on 6 years of data. The lower left-most
panel is the randomly selected 50% of the region for computation of the empirical variogram and
correlation length. The lower middle panel shows the other 50% of the region that was assumed
have no GV. Lower right panel shows the estimation of the bias at the non-GV grid boxes using
ordinary kriging.

Figure 4b. Histograms of kriging error and actual error for false alarm ratio (FAR) over
ungauged gridboxes. Here kriging error (shown in black) is defined as the difference between
transferred (or kriged) FAR and the actual FAR derived from GV data. The actual GV-based
FAR is shown in pink.

Figure 4b. Histograms of kriging error and actual error for false alarm ratio (FAR) over
ungauged gridboxes. Here kriging error (shown in black) is defined as the difference between
transferred (or kriged) FAR and the actual FAR derived from GV data. The actual GV-based
FAR is shown in pink.

Figure 5. Impact of GV coverage (or sparseness) on the effectiveness of uncertainty metric
transfer by ordinary kriging at climatologic scale (upper panel) and seasonal scale (lower panel)
for the central US.. Computed with TMPA data collected for a 100 day period (May-August) in
2007-2008.
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566	 Figure 1. Conceptual rendition of the idea of `transfer' of uncertainty information from a gaged
567	 (GV) location to an ungaged (non-GV) location. Upper panel depicts the notion of `uncertainty'
568	 of satellite rainfall data (in this case, the scalar deviation of magnitudes is termed `uncertainty'
569	 although there are many other types of uncertainty). Lower panel depicts how the known
570	 uncertainty (derived from GV sites shown in black in the middle panel) would be `transferred' to
571	 the non-GV (ungaged) sites shown in blue (right most panel). Reprinted fr •oni Tang and Hossain,
572	 2009.
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Figure 2. Correlation length of uncertainty metrics for 3B41RT (upper panel)
and 3B42RT (lower panel) shown as a function of season. Note the distance
unit is 0.25 degree grid boxes (— 25 km). The vertical bars are shown in order
from left to right as `Bias', `RMSE', `POD rain', `POD no-rain', `FAR'.
(Taken fi •onl Tang and Hossain, 2009).
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Figure 3. Left panel: probability of a 3B42RT 0.25° grid box having a PMW scan from either TMI,
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584 Figure 4a. Transfer of Bias of 3B41RT from gauged to ungauged locations. Upper leftmost
585
	

panel shows the true field of uncertainty on bias based on 6 years of data. The lower left most
586
	

panel is the randomly selected 50% of the region for computation of the empirical variogram and
587
	

correlation length. The lower middle panel shows the other 50% of the region that was assumed
588
	

to be non-GV grid boxes. Lower right panel shows the estimation of the bias at the non-GV grid
589
	

boxes using ordinary kriging.
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Figure 4b. Histograms of kriging error and actual uncertainty for false alarm ratio (FAR) over
ungauged gridboxes. Here kriging error (shown in black) is defined as the difference between
transferred (or kriged) FAR and the actual FAR derived from GV data. The actual GV-based
FAR is shown in pink.
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(lover panel) for the central US.
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618	 Table la. Assessment of the transfer of uncertainty metrics at monthly time scales (for summer
619	 months of June-July-August).

MONTH % of
region
lacking
GV
data

BIAS RMSE POD FAR

June Mean
Error'

Std.
Dev of
Error2

Mean
Error

Std.
Dev
Of
Error

Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev of
Error

10 0.53 0.78 0.19 0.18 0.12 0.10 0.22 0.27
20 0.64 0.86 0.22 0.29 0.13 0.13 0.23 0.25
30 0.60 0.93 0.21 0.24 0.13 0.12 0.24 0.31
40 0.66 1.00 0.22 0.24 0.13 0.14 0.22 0.26
50 0.68 1.08 0.23 0.20 0.14 0.16 0.24 0.37
60 0.73 1.12 0.25 0.27 1	 0.14 0.16 0.25 0.33
70 0.75 1.11 0.26 0.25 0.15 0.15 0.26 0.35
80 0.85 1.24 0.27 0.30 0.16 0.16 0.28 0.40
90 1.00 1_43 0.31 0.29 0.19 0.23 0.31 0.47

July Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev
Of
Error

Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev of
Error

10 0.54 0.71 0.20 0.20 0.16 0.15 0.32 0.43
20 0.64 0.98 0.22 0.22 0.17 0.18 0.27 0.31
30 0.67 0.98 0.22 0.21 0.16 0.19 0.28 0.32
40 0.61 0.85 0.23 0.24 0.18 0.22 0.31 0.41
50 0.67 1.01 0.25 0.24 0.18 0.21 0.31 0.39
60 0.72 1.09 0.26 0.27 0.17 0.19 0.32 0.40
70 0.80 1.13 0.26 0.24 0.19 0.24 0.33 0.44
80 0.87 1_32 0.30 0.34 0.21 0.25 0.35 0.48
90 0.99 1.46 0.33 0.34 0.24 0.30 0.39 0.51

August Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev
Of
Error

Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev of
Error

10 0.47 0.79 0.21 0.22 0.14 0.17 0.28 0.47
20 0.56 0.84 0.24 0.32 0.16 0.19 0.28 0.41
30 0.52 0.78 0.23 0.28 0.15 0.17 0.28 0.35
40 0.62 1.00 0.24 0.30 0.15 0.17 0.27 0.34
50 0.62 0.95 0.25 0.34 0.16 0.21 0.27 0.35
60 0.70 1.09 0.26 0.30 0.17 0.21 0.27 0.34
70 0.69 1	 1.05 1	 0.30 1	 0.36 1	 0.17 1	 0.20 0.29 0.40
80 0.78 1.16 0.36 0.49 0.18 0.20 0.31 0.43
90 0.83 1.19 0.35 0.42 0.21 0.23 0.33 0.50

620	 Error = (Interpolated Uncertainty Metric - Actual Uncertainty Metric)/Actual Uncertainty Metric
621	 1 Mean Error= Mean of Error (as defined above) over non-GV grid boxes
622 ZStd. Dev of Error = Standard Deviation of Error (as defined above) over non-GV grid boxes
623
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624	 Table lb. Assessment of transfer of uncertainty metric at weeklv time scales (for June weeks).
Week
(of
June)

% of
region
lacking
GV
data

BIAS RMSE POD FAR

lst

Week
Mean
Error'

Std.
Dev of
Error

Mean
Error

Std.
Dev
Of
Error

Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev of
Error

10 0.78 1.11) 0.45 0.73 0.27 0.29 0.35 0.32

20 0.88 1.17 0.46 0.68 0.28 0.29 0.35 0.32
30 0.87 1.16 0.41 0.53 0.31 0.34 0.36 0.33

40 0.86 1.15 0.48 0.76 0.33 0.35 0.35 0.31
50 0.97 125 0.41 0.54 0.33 0.35 0.34 0.30

60 093 1.15 0.53 1	 0.83 0.33 0.36 0.38 0.34

70 1.05 135 0.52 0.80 034 0.36 0.38 0.32
80 0.98 1.15 0.56 0.81 0.37 0.38 0.38 0.33

90 1.15 1.37 0.74 1.06 0.39 0.38 0.40 0.38
2 nd

Week
Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev
Of
Error

Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev of
Error

10 0.85 1.23 0.39 0.77 0.23 0.25 0.35 0.31

20 0.81 1.15 037 0.64 0.25 0.27 0.34 0.32
30 0.82 120 0.47 0.78 0.26 0.29 0.37 0.37

40 0.80 1.19 0.47 0.77 0.27 0.31 0.37 0.37
50 090 1.33 0.47 0.75 0.26 0.27 0.35 0.33

60 0.94 128 0.48 0.78 0.28 0.31 0.36 0.32

70 094 1.29 0.51 0.84 1	 0.29 0.32 0.38 0.36
80 1.08 1.45 0.61 0.96 0.29 0.33 0.38 0.38

90 1.11 1.46 0.68 1.06 0.31 0.38 0.40 0.37
3 rd

Week
Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev
Of
Error

Mean
Error

Std.
Dev of
Error

Mean
Error

Std.
Dev of
Error

10 0.76 1.04 0.42 0.56 0.28 0.33 0.31 0.28

20 0.80 1.25 0.50 0.77 0.28 0.29 0.32 0.29
30 0.79 1.25 0.54 0.91 0.31 0.34 0.33 0.30

40 0.82 1.19 0.52 0.80 0.32 0.37 0.32 0.29
50 0.83 1.18 0.55 0.93 0.31 0.33 0.32 0.32

60 0.86 1.26 0.52 0.75 0.32 0.36 0.33 0.32
70 0.94 1.32 0.58 0.90 0.32 0.34 0.33 0.33

80 0.98 1.30 0.60 0.88 0.35 0.18 0.14 0.35
90 1.09 1.43 0.73 1.16 0.39 0.44 0.39 0.38

625	 Error = (Interpolated Uncertainty Metric - Actual Uncertainty Metric)/Actual Uncertainty Metric
626 'Mean Error= Mean of Error (as defined above) over non-GV grid boxes
627 2 Std. Dev of Error = Standard Deviation of Error (as defined above) over non-GV grid boxes
628
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NA (HIT)	 NB (MISS)

NC (MISS)	 ND (HIT)
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629	 Table A.1. Contingency Table (a HIT is defined when both satellite and GV agree on the type of
630	 event detected; a MISS is when there is disagreement between satellite and GV detected events).
631

632

633	 Truth/Reference

634	 Rainy Gridboxes	 Non-rainy Gridboxes
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